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Summary:

-Why Are We Interested in Ultrafine PM

- What do we know about their toxicological properties

- What do we know (or do not) about their sources,
formation mechanisms

- What do we know about their diurnal, seasonal and
spatial characteristics

-  Technologies developed by the Aerosol Laboratory at
USC by funds through the SCPCS to measure physical,
chemical and toxicological properties of ultrafine PM



Ambient Aerosol Size Distribution



Los Angeles is a Very Unique Air
Basin
•Distinct areas of different meteorological
conditions result in spatial variation of PM2.5

•Predictable, well-defined and consistent
meteorology; suitable for “controlled”, laboratory-
style experiments using real-life air pollutants as
test aerosols.

•The distinct sources affecting specific areas of
the LAB provide an ideal testing ground for
hypotheses driven health studies.



Zone of Influence
of Emissions/
Sources
 
Freeways

-Diesel
- Gasoline

Dispersion

Urban/
Downtown
Los Angeles
areas, not in the
freeway zone
 
“Source” areas
 
 

Transformation
Chemical
reaction

Inland-Eastern
Los Angeles
Basin regions
 
“Receptor” areas

 

Three Different PM Exposure (or Air Pollution) Regimes
in the Los Angeles Basin



Source and Receptor Areas in the Los Angeles Basin
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Sampling was Conducted in :

•  Downey (source) September 2000-
January 2001

•  Riverside (receptor) February – June
2001

•  Rubidoux (receptor) June – September
2001

•  Claremont (receptor) September 2001-
August 2002

• USC (source) September 2002 - present

•  Concurrently with in vivo and in vitro
studies to concentrated air particulates
(CAPS)



Sardar et al., Atmos. Environ, 2003

Monthly average PM for ultrafine
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Monthly average OC distribution in coarse, ultrafine and accumulation mode
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Monthly average EC distribution in coarse, ultrafine and accumulation mode
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24-h Average PM10 Mass and Chemical Composition in Downey
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24-h Average PM10 Mass and Chemical Composition in Riverside
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Riverside - Regular MOUDI  - Aug.-Oct. 2001
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Effect of transport on PAH size distribution
(Eiguren et al., Aerosol Science and Technology, 2003)
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- coarse PAH increase with Temperature
- most PAH in accumulation mode except February 2002 (Santa Ana conditions)
- PM2.5 concentrations of PHE-FLT increase from winter > summer
- PM2.5 concentrations of BAA-IND decrease from winter  > summer 
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Average EC, UF Mass and Total PM Number at USC
Nov. 2002 - February 2003
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Typical Size Distributions at USC
December 2002
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Claremont Particle Number and TEOM mass concentration during the day (Jun 2002)
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UC Riverside Particle Number and TEOM mass concentration during the day (June 2002)
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Advection of UFP from source to receptor sites is 
important  in warmer period (Fine et al., 2002, AS&T)

Figure 4. Monthly averaged mode diameter in Riverside, California
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Figure 4. Monthly averaged mode diameter in Riverside, California
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         Virtual Impactors

Plenum Holding
12 Virtual impactors

Figure 1. Schematic of the Ultrafine Particle Concentrator (UFPC) for Human Exposure
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5 LPM fine PM
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  ultrafine PM
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separate compartments
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Figure 1a.  Versatile Aerosol Concentration Enrichment System (VACES) for concurrent in vivo studies to coarse, fine and ultrafine PM
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concentrated ambient particles
Grown Particles

flow out

220 LPM
5 LPM

SKC Biosampler

Ultra pure Distilled Deionized Water

Major flow

Particle Concentrator for Collection of Particles
for in vitro tests



Concentration Enrichment as a Function of Particle Diameter for Three Minor 
to Total Flow Ratios (r).  Intake Flow = 1200 LPM
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Preservation of Chemical Composition of 
Ambient PM After Concentration based on Single 
Particle Analysis (Zhao et al., AS&T, 2003)
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Figure 3.  Stanier et al (2002) using the Aerodyne Spectrometer



Misra et al., AS&T, 
2003
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Max. Concentration Enrichment of 50 in a 
single-stage virtual impactor



Use of the F+UF Concentrators to Increase the
Signal of Other Instruments :

- NanoMOUDI (Geller et al., AS&T, 2002)

-  Pittsburgh Supersite Nucleation Experiments
(Steiner et al., 2002)

-  Wexler Rapid Single-Particle Mass Spectrometer
(RSMS-3)

-  P. Zieman (UCR)  Thermal Desorption Mass
Spectrometer



Thermal Desorption Mass Spectrometer tests
with Concentrators

Goals :

- rapid organic speciation analysis of PM in
accumulation and ultrafine modes

-  identification of source tracers

-  in source (USC) and receptor (UC Riverside)
sites

- during winter and summer periods

Concentrator TDPBMS

Concentr.
Factor  x 50

ambient

aerosol



m/z: 55, 57, 69,
71, 95,97

Hydrocarbons

m/z: 60, 73:
organic acids

m/z 30, 46:
ammonium nitrate

UCR samples in
February 2003



Near Continuous Ultrafine Mass Concentration Monitor
(Chakrabarti et al., Aerosol Science and Technology, 2002
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Figure 2. BAM vs. MOUDI  Ultrafine PM concentration
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The SMPS cannot measure ultrafine PM mass concentrations.
Events of July 4, 2002 (fractal-like PM produced by combustion)

Figure 4c. BAM and SMPS Ultrafine Mass Concentrations on July 4, 2002
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Fractal-like combustion particles have a high
surface area, hence electrical mobility, but a
low density



BAM to SMPS Ultrafine Mass Concentration Ratios as a Function of Time of Day
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High-Volume, Very  Low
Pressure Drop Impactor
for Separation of Coarse-
Fine-Ultrafine PM

Misra et al Journal of
Aerosol Science, 33(5): 735-
752, 2002



Figure 4. Evaluation of the USC High Volume Low Cutpoint Impactor with an 

Uncoated Quartz Substrate and Different Types of Test Aerosols
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Use of Source Tracers in Exposure and Toxicology 
Research

Using individual organic compounds as tracers of primary 
emissions sources, how do source contributions vary 
from:

- site to site, 

- over the course of the day

- between size fractions?

Size Distribution and Concentrations of :

- hopanes (vehicles)

- cholesterol (cooking)

- levoglucosan (wood smoke)

- 1,2 benzenedicarboxylic acid (photochemistry)

At UCR (receptor) and USC (source)

(Fine at al., Atmos. Environ., 2003)
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1,2 benzenedicarboxylic acid - Riverside Summer
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1,2 benzenedicarboxylic acid - Riverside Winter
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1,2 benzenedicarboxylic acid- USC Summer
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EC Diesel vs Gasoline Freeways (Zhu et al.,
Atmospheric Environment. 36, 4375-4383, 2002





RESULTS AND DISCUSSION
u Number Concentration for Different Size Ranges
        Vs. Increasing Distance from Freeway 710.

Freeway 710







Increase of Particle Surface Area in
Summer



Monitoring Particulate Matter in Community Air
(Collaboration Between CARB and SCPCS)

CARB Staff:

Dane Westerdahl, Scott Fruin, Ken Bowers, and Steve Mara

Overarching Concepts

•People do not live at monitoring sites

•Fixed site monitors don’t capture complexity of urban air pollution

•Fixed site monitoring does not measure many pollutants of concern

Objectives of Pilot Level Studies

•Evaluate new methods to determine community exposures to fine
and ultrafine PM and gases

•Compare observations with fixed site monitors

•Design future investigations



Mobile Monitoring Project
Electric RAV4 Instrumentation

EAD

Inverter

NOx Analyzer 

Aethalometer



Freeway Monitoring
Aethalometer, NO, and EAD
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Freeway Monitoring
Portable CPC 3007

(levels appear higher on freeways with diesel trucks)

Long Beach Pasadena

Smoking truck



Freeway and City Monitoring
SMPS with Nano DMA

11:40  Long Beach Stop (urban)11:13 Smoking truck on 10

12:02  710 Freeway (diesel) 12:36 Pasadena 110 (gasoline only)

Feb. 20



Oxidative stress hypothesis

• Part of our SCPCS investigations focused on identifying PM
components that induce pulmonary inflammation through
the generation of oxidative stress

• We collected coarse (2.5-10 µµm), fine (< 2.5 µµm) and
ultrafine (UFP) particles (< 0.15 µµm) and examined their
toxicity.

• UFP were most potent towards inducing cellular heme
oxygenase 1 (HO-1) expression as an oxidative stress
marker.

• This effect is directly correlated to the high organic carbon
and polycyclic aromatic hydrocarbon (PAH) content of
UFP.

• The PAH content of concentrated PM samples is a good
surrogate for redox cycling chemicals , as demonstrated by
electron transfer from dithiothreitol (DTT).



Redox Activity vs Fraction (Li et al., EHP, 2002)
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Redox Activity vs Total PAH levels (Li et al.,
EHP, 2002)
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UFP Induce Much Higher Oxidative Stress (Li et al., Env. Health Perspect., 2002)
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•UFP localize in mitochondria where they induce major
structural damage.
•This contributes to oxidative stress.
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Issues Related to the Diurnal, Spatial and Seasonal
Characteristics of Individual Exposure to PM

Observations from our studies in LA which are (hopefully)
applicable to other urban areas

PM pers = PM amb + PM non amb

Important Attributes of Ambient PM in Determining Where-
When People Are Exposed

- Local (PM from specific sources)

-  Regional (secondary PM; PM advected from source to
receptor areas)

-  Volatile vs. Non – Volatile

- the concentrations of volatile PM of outdoor origin
decrease substantially in indoor environments, especially
in wintertime



• Particle Decrease from freeway or busy road is a delicate balance between 2
mechanisms:

–  dilution (affecting PM, CO and NOx)

–  condensation-nucleation (affecting PM only)

•  Summer:

– Dilution and mixing more pronounced in summertime

– Concentrations decrease more rapidly with distance from the road

– Particles grow faster to larger sizes by turbulent coagulation

•  Winter:

– Depressed mixing height preserves size distributions

–  Slower decay, higher number concentrations (by a factor of 5 -10)

–  Higher concentrations of nuclei mode PM (3-10 nm) even at distances ~
150  away from road

Implication for Exposure Assessment- EPI studies

– The concentrations of PM do not follow the same spatial, seasonal  trends
with CO and NOx

–  These gases cannot be used as surrogates of PM attributable to vehicular
emissions



Effect of Season on PM Exposure from Our Studies
in LA

Cooler Season (Higher RH and Lower T)

- Increased Concentrations of PM from Vehicles and Wood Smoke

-  Increased Spatial Variability in PM concentrations

- Much higher particle number concentrations

-  High concentrations in urban areas and low concentrations in receptor
sites

-  Finer PM size – increased ultrafine fraction

(indoor implications for dosimetry as well as outdoor- penetration)

-  People spend less time outdoors and PM infiltration rates lower

Warmer Season

- Increased secondary formation of PM

- Increased long-range transport of PM from sources to receptors

-  More spatially homogenous distribution of PM

-  Higher PM fraction in accumulation mode

-  More time spent outdoors and (in the absence of A/C) more infiltration



Few concluding thoughts

-  Rigorous Assessment of Contribution of PM of Ambient Origin to
Personal Exposure is of Paramount Importance

-  (Even more important) assessment of PM from specific outdoor
sources and formation mechanisms to individual exposure

-  Use of Molecular Tracers-Signatures of Specific Sources,
Combined with Advances in Personal PM Monitoring to:

- Understand the degree of the source contribution to personal
exposure

-  Its dependence on season, proximity to source, home
characteristics, individual activity patterns

-  (ideally) concurrent with panel studies as well as toxicological
studies (CAP or other)

-  determine the effectiveness of reducing source emissions in
protecting public health



 
Figure 4: Pictures of Personal Cascade Impactor Sampler (PCIS)

 

                                                                                                           

                                                                                                                  
 

                                                                                                       

                                                                                                                 
 

Misra et al., Journal of
Aerosol Science, 33(7),
1027-1047, 2002



USC Personal Cascade Impactor Sampler (PCIS)

-  Classifies PM in 5 ranges at a flow of 10 LPM

- 2.5 - 10; 1-2.5; 0.5 –1.0; 0.2 - 0.5; and < 0.2 µµm

-  Used with a light, battery-operated personal pump
-
-  Combined with outdoor measurements and tracers of specific
outdoor sources (i.e., vehicular emissions, photochemistry)
allows us to determine the degree to which they contribute to
personal exposures

 




