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summary:

-Why AreWe Interested in Ultrafine PM
- What do we know about their toxicological properties

- What do we know (or do not) about their sour ces,
for mation mechanisms

- What do we know about thealr diurnal, seasonal and
gpatial characteristics

- Technologies developed by the Aerosol Laboratory at
USC by fundsthrough the SCPCSto measur e physical,
chemical and toxicological properties of ultrafine PM
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Los Angelesisa Very Unique Air
Basin

Distinct areas of different meteorological
conditions result in spatial variation of PM2.5

*Predictable, well-defined and consistent
meteorology; suitable for “controlled”, |aboratory-
style experiments using real-life air pollutants as
test aerosols.

*The distinct sources affecting specific areas of
the LAB provide an ideal testing ground for
nypotheses driven health studies.



Three Different PM Exposure (or Air Pollution) Regimes
In the Los Angeles Basin
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Source and Receptor Areas in the Los Angeles Basin
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Sampling was Conducted in

* Downey (source) September 2000-
January 2001

* Riverside (receptor) February —June
2001

* Rubidoux (receptor) June — September
2001

o Claremont (receptor) September 2001-
August 2002

» USC (source) September 2002 - present

o Concurrently with in vivo and in vitro
studiesto concentrated air particulates
(CAPS)



Sardar et al., Atmos. Environ, 2003

Monthly average PM for ultrafine
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Sardar et al., Atmos. Environ, 2003

Monthly average OC distribution in coarse, ultrafine and accumulation mode
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Sardar et al., Atmos. Environ, 2003
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Monthly average EC distribution in coarse, ultrafine and accumulation mode
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24-h Average PM10 Mass and Chemical Composition in Downey

B Metals 14
OdocC
BEC s MMD ~0.35um 12
O(NH4)20S4
ONH4NO3 10 &
S
8 N
[
©
@
= 6 E
(D]
o
c
(@]
-4 O
2
| ]
\\ / T T T T 0
\\\< 0.1 / 0.1 -0.35 0.35-1.0 1-25 2.5-10

Particle Size Range, microns

Singh et a Atmospheric Environment, 36(10): 1675-168, 2002




24-h Average PM10 Mass and Chemical Composition in Riverside
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Effect of transport on PAH size distribution

(Eiguren et al., Aerosol Science and Technology, 2003)
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coarse PAH increase with Temperature

most PAH in accumulation mode except February 2002 (Santa Ana conditions)
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Average EC, UF Mass and Total PM Number at USC
Nov. 2002 - February 2003
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Typical Size Distributions at USC
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Particle Number Concentratiol

Hourly averaged PM 2.5 and PN Concentrations at UCR- January 2002
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Mode Diameter (nm)

Advection of UFP from source to receptor sitesis
Important in warmer period (Fine et al., 2002, AS&T)
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Concentration Enrichment as a Function of Particle Diameter for Three Minor
to Total Flow Ratios (r). Intake Flow = 1200 LPM
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Preservation of Chemical Composition of
Ambient PM After Concentration based on Single
Particle Analysis (Zhao et al., AS& T, 2003)
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Figure 3. Stanier et al (2002) using the Aerodyne Spectrometer
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Concentration of EC and PAHs vs Time (Minor Flow=20 LPM)
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Use of the F+UF Concentratorsto Increasethe
Signal of Other Instruments:

- NanoMOUDI (Geller et a., AS& T, 2002)

- Pittsburgh Supersite Nucleation Experiments
(Steiner et al., 2002)

- Wexler Rapid Single-Particle Mass Spectrometer
(RSM S-3)

- P. Zieman (UCR) Thermal Desorption Mass
Spectrometer



Thermal Desorption Mass Spectrometer tests
with Concentrators

mbiit» Concentrator , »| TDPBMS >
aerosol |
Concentr.
Goals: Factor x 50

- rapid organic speciation analysis of PM In
accumulation and ultrafine modes

- Identification of sourcetracers

- In source (USC) and receptor (UC Riverside)
stes

- during winter and summer periods



UCR samplesin
February 2003
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Near Continuous Ultrafine M ass Concentration Monitor
(Chakrabarti et a., Aerosol Science and Technology, 2002
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The SMPS cannot measure ultrafine PM mass concentrations.
Events of July 4, 2002 (fractal-like PM produced by combustion)

Figure 4c. BAM and SMPS Ultrafine Mass Concentrations on July 4, 2002
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Fractal-like combustion particles have a high
surface area, hence electrical mobility, but a
low density



BAM to SMPS Ratio
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Figure 4. Evaluation of the USC High Volume Low Cutpoint Impactor with an

Uncoated Quartz Substrate and Different Types of Test Aerosols
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Use of Source Tracers in Exposure and Toxicology
Research

Using individual organic compounds as tracers of primary
emissions sources, how do source contributions vary
from:

site to site,
- over the course of the day

- between size fractions?

Size Distribution and Concentrations of :

- hopanes (vehicles)

- cholesterol (cooking)

- levoglucosan (wood smoke)

- 1,2 benzenedicarboxylic acid (photochemistry)
At UCR (receptor) and USC (source)
(Fine at al., Atmos. Environ., 2003)
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1,2 benzenedicarboxylic acid- USC Summer 1,2 benzenedicarboxylic acid - Riverside Summer
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Particle Humber Concentration (cm'z)
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Freeway 710

RESUL TS AND DISCUSSION

4 Number Concentration for Different Size Ranges
Vs. Increasing Distance from Freeway 710.
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Monitoring Particulate Matter in Community Air
(Collaboration Between CARB and SCPCS)

CARB Staff:

Dane Westerdahl, Scott Fruin, Ken Bowers, and Steve Mara
Overarching Concepts

*People do not live at monitoring sites

Fixed site monitors don’t capture complexity of urban air pollution
*Fixed site monitoring does not measure many pollutants of concern
Objectives of Pilot Level Studies

*Evaluate new methods to determine community exposures to fine
and ultrafine PM and gases

Compare observations with fixed site monitors

*Design future investigations



Mobile Monitoring Project
Electric RAV4 Instrumentation




Freeway Monitoring
Aethalometer, NO, and EAD

2500

NO (PPB)

m>_u 33\03wx Hoov

2000

1500

1000

r 500

o

T 3000

Aethalometer

NO
ead*100

-5

110
119

110

Long Beachstop 5o 20D

(10

710

PATTLAN

WWM U

0€:€0:€T
02:6G:CT
0T:99:¢T
00:TS:¢T
®0G:91:CT
0v:Ccy:CT
0€:8€:¢T
0c-vect
0T:0€:¢T
00:9¢:¢T
0§:T¢:¢T
ov:LT:¢T
0€:€T:¢T
0¢:60:¢T
0T:S0:CT
00:T0:¢T
0G:99:TT
0v:¢S:TT
m0€: 8V TT
0c:vy-TT
OT:07-TT
00:9€:TT
§0G'TETT
Ov:L¢:TT
—80€:€¢- 1T
0¢:6T-TT

\\h\LS ST:TT

U,

USC

M

—

moo TT:1T
05:90:TT
EOV:COTT
0€:85:0T
E0C VS 0T
0T:05:0T
00:97:0T

l

AL

60000 -

50000

40000 S'T]Oki ng truCk

30000

20000

Black O&co:

(ng/m3)

10000

0S:TY:0T
o

Time

D

LL

)
@\



Freeway Monitoring
Portable CPC 3007




Freeway and City Monitoring
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Oxidative stress hypothesis

Part of our SCPCSinvestigations focused on identifying PM
components that induce pulmonary inflammation through
the generation of oxidative stress

We collected coarse (2.5-10 mmn), fine (< 2.5 mMn) and
ultrafine (UFP) particles (< 0.15 mm) and examined their
toxicity.

UFP were most potent towards inducing cellular heme
oxygenase 1 (HO-1) expression as an oxidative stress
marker.

This effect isdirectly correlated to thehigh organic carbon
and polycyclic aromatic hydrocarbon (PAH) content of
UFP.

The PAH content of concentrated PM samplesis a good
surrogate for redox cycling chemicals, as demonstrated by
electron transfer from dithiothreitol (DTT).



Redox Activity vs Fraction (L1 et al., EHP, 2002)
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Redox Activity vs Total PAH levels (L1 et al.,
EHP, 2002)
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UFP Induce Much Higher Oxidative Stress (Li et al., Env. Health Perspect., 2002)
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BEAS-2B

*UFP localize in mitochondria wherethey induce major
structural damage.
*Thiscontributesto oxidative stress.

Untreated Mag. x 8500 UFP Mag. x 8500 UFP Mag. x 85000




Issues Related to the Diurnal, Spatial and Seasonal
Characteristics of Individual Exposure to PM

Observations from our studies in LA which are (hopefully)
applicable to other urban areas

PM__..=PM,_ +PM

pers — am non amb

Important Attributes of Ambient PM in Determining Where-
When People Are Exposed

- Local (PM from specific sources)

- Regional (secondary PM; PM advected from source to
receptor areas)

- Volatile vs. Non — Volatile

- the concentrations of volatile PM of outdoor origin
decrease substantially in indoor environments, especially
in wintertime



Particle Decrease from freeway or busy road is a delicate balance between 2
mechanisms:

dilution (affecting PM, CO and NOX)
condensation-nucleation (affecting PM only)

Summer ;

Dilution and mixing mor e pronounced in summertime
Concentr ations decr ease mor e rapidly with distance from the road
Particles grow faster to larger sizes by turbulent coagulation

Winter:

Depressed mixing height preserves size distributions
Slower decay, higher number concentrations (by a factor of 5 -10)

Higher concentrations of nuclei mode PM (3-10 nm) even at distances ~
150 away from road

Implication for Exposure Assessment- EPI studies

The concentrations of PM do not follow the same spatial, seasonal trends
with CO and NOx

These gases cannot be used as surrogates of PM attributable to vehicular
emissions



Effect of Season on PM Exposure from Our Studies
in LA
Cooler Season (Higher RH and Lower T)
- Increased Concentrations of PM from Vehicles and Wood Smoke
- Increased Spatial Variability in PM concentrations
- Much higher particle number concentrations

- High concentrations in urban areas and low concentrations in receptor
sites

- Finer PM size —increased ultrafine fraction
(indoor implications for dosimetry as well as outdoor- penetration)
- People spend less time outdoors and PM infiltration rates lower
Warmer Season
- Increased secondary formation of PM
- Increased long-range transport of PM from sources to receptors
- More spatially homogenous distribution of PM
- Higher PM fraction in accumulation mode

- More time spent outdoors and (in the absence of A/C) more infiltration



Few concluding thoughts

- Rigorous Assessment of Contribution of PM of Ambient Origin to
Personal Exposure is of Paramount Importance

- (Even more important) assessment of PM from specific outdoor
sources and formation mechanisms to individual exposure

- Use of Molecular Tracers-Signatures of Specific Sources,
Combined with Advances in Personal PM Monitoring to:

- Understand the degree of the source contribution to personal
exposure

- Its dependence on season, proximity to source, home
characteristics, individual activity patterns

- (ideally) concurrent with panel studies as well as toxicological
studies (CAP or other)

- determine the effectiveness of reducing source emissions in
protecting public health



Figure 4: Pictures of Personal Cascade Impactor Sampler (PCIS)

Misraet al., Journal of
Aerosol Science, 33(7),
1027-1047, 2002
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USC Personal Cascade Impactor Sampler (PCIS)

- Classifies PMin 5 ranges at a flow of 10 LPM
-2.5-10; 1-2.5; 0.5-1.0; 0.2-0.5; and < 0.2 nm

- Used with a light, battery-operated personal pump

- Combined with outdoor measurements and tracers of specific
outdoor sources (i.e., vehicular emissions, photochemistry)
allows us to determine the degree to which they contribute to
personal exposures





